
A completely uniform transformer for parity

Alexander Kozachinskiy1 Tomasz Steifer2,3

1Centro Nacional de Inteligencia Artificial, Chile
2Instituto de Ingenieŕıa Matemática y Computacional, Universidad Católica de Chile

3Institute of Fundamental Technological Research, Polish Academy of Sciences

Abstract

We construct a 3-layer constant-dimension transformer, recognizing the parity language, where neither
parameter matrices nor the positional encoding depend on the input length. This improves upon a
construction of Chiang and Cholak who use a positional encoding, depending on the input length (but
their construction has 2 layers).

1 Introduction

One of the ways to do mathematical analysis of the capabilities and limitations of the transformer architec-
ture [8] is to study formal languages, recognizable by them. Namely, for a given formal language L, we study,
if there exists a choice of parameters in the transformer architecture, for which words from L are accepted
and words not from L are rejected by the resulting transformer. A seminal work of Hahn [5] performed such
analysis for a number of formal languages, including the parity language, consisting of binary words with
even number of 1s. Hahn have shown that transformers, recognizing this language, must have low confidence,
partially explaining an empirically observed struggle of transformers in learning this language [1, 4].

However, this does not exclude the possibility of existence of a theoretical solution for this language. And
indeed, as was shown by Chiang and Cholak [3], there exists a 2-layer transformer with constant embedding
dimension, recognizing the parity language. Their construction is uniform in a sense that parameter matrices
in it do no depend on the input length. However, there is one aspect of their construction which is not
completely uniform – the positional encoding. At position i, they use i/n, where n is the input length. This
means that their positional encoding has to be reset each time we want to use their transformer for a larger
input length.

In this paper, we get rid of this disadvantage of their construction by giving a completely uniform 3-layer
transformer, recognizing parity. That is, in our construction, neither parameter matrices nor positional
encoding depend on n. We do not use neither positional masks nor layer norm.

It remains open if the parity language can be recognized by a 1-layer transformer with constant embedding
dimension, even non-uniformly. Current lower bound methods against 1-layer transformers [2, 6, 7] do not
seem to work against parity.

2 Preliminaries

An attention layer of dimension d is a length-preserving function A : (Rd)∗ → (Rd)∗, given by three matrices
K,Q,O ∈ Rd×d and a neural network N : Rd → Rd with ReLU activation. On input (f1, . . . , fn) ∈ (Rd)n,

1

the output A(f1, . . . , fn) is computed as follows. First, we define:

ai =

n∑
j=1

e⟨Kfj ,Qfi⟩fj

n∑
j=1

e⟨Kfj ,Qfi⟩
, i = 1, . . . , n,

and set:
A(x1 . . . xn)i = N (fi +Oai), i = 1, . . . , n.

Applying N allows us to do arbitrary piece-wise linear transformation of Rd.

Definition 1. We say that a language L ⊆ {0, 1}∗ is recognizable by a completely uniform transformer
with C layers if there exists d ∈ N, C attention layers A1, . . . , AC of dimension d, and a letter embedding
ℓ : {0, 1} → Rd, and a position encoding p : N → Rd such that for any n ∈ N, and for any x = x1x2 . . . xn ∈
{0, 1}n, the following holds. Define:

f1 = ℓ(x1) + p(1), . . . , fn = ℓ(xn) + p(n),

and set
(g1, . . . , gn) = AC ◦ . . . ◦A1(f1 . . . fn).

Then the following must hold. If x ∈ L, we have g11 > 0, and if x /∈ L, we have g11 < 0.

Note that in our definition, the positional encoding p does not take n, the input length, as an input.

3 Construction

Lemma 1. For any function f : N → R, there exists a completely uniform transformer that, for any input
length n, computes f(n) in every position in one layer.

Proof. We need a positional encoding p : N → R such that:

p(1) + . . .+ p(n)

n
= f(n),

for every n (this average is computable via softmax with uniform weights), which is achievable by setting
p(1) = f(1) and p(i) = if(i)− (i− 1)f(i− 1) for i ≥ 2,

Theorem 1. There exists a 3-layer completely uniform transformer, recognizing the parity language.

Proof. Assume that on input we get x = x1 . . . xn ∈ {0, 1}n. Denote Σ = x1 + . . . + xn. Let us first give a
construction, assuming that Σ ≥ 1, that is, that not all input bits are 0. We explain how to get rid of this
assumption in the end of the proof.

The plan of the proof is as follows. At the first two layers, we need to compute a sequence of numbers

a1, a2, . . . , an,

with the property that aΣ is strictly larger than any other number in the sequence. Assuming we have done
this, at the last layer we can compute the following:

n∑
i=1

exp{aif(n)} · (−1)i

n∑
i=1

exp{aif(n)}
. (1)

2

using a positional encoding i 7→ (−1)i and Lemma 1 for a function f : N → {0, 1} of our choice. Our goal
for (1) is to encode parity, i.e., (1) must be positive if Σ is even and negative otherwise. Indeed, the limit of
(1) as f(n) → +∞ is (−1)Σ, because aΣ > ai for i ̸= Σ. For any fixed n, there are finitely many inputs of
length n. Hence, we can take f(n) large enough so that, for any input x of length n, the difference between
(1) for this x and (−1)Σ is at most 1/3.

It remains to calculate a sequence a1, . . . , an with this property at the first two layers. By Lemma 1, we
compute lnn at every position in the first layer. Then, for an absolute constant δ ∈ R, to be specified later,
we set α = eδ and use the second layer to compute the following expression at every position:

γ =

n∑
i=1

e(− ln(n)+δ)·(1−xi) · xi

n∑
i=1

e(− ln(n)+δ)·(1−xi)

=
Σ

Σ+ (n− Σ) · α
n

=
1

1 + α
Σ − α

n

. (2)

It now suffices to prove the following lemma.

Lemma 2. There exists α ∈ (0, 1) such that for all n and Σ ∈ {1, . . . , n}, the maximum of the expression:

ai = −
∣∣∣γ −

(
1−

(α
i
− α

n

))∣∣∣
over i ∈ {1, . . . , n} is attained uniquely at i = Σ, where γ is defined by (2).

Indeed, once we have computed γ, we can express ai by computing 1
n in every position by Lemma 1, and

using a positional encoding i 7→ 1
i . We can then calculate the absolute value using a constant-size ReLU

network.

Proof of Lemma 2. Observe that: ∣∣∣∣ 1

1 + z
− (1− z))

∣∣∣∣ = z2

1 + z
≤ z2

for z ≥ 0. Applying this to z = α
Σ − α

n , we get:

γ = 1−
(α

Σ
− α

n

)
+ ρ,

for some ρ with |ρ| ≤ α2

Σ2 . We now can write:

ai = −
∣∣∣(α

i
− α

Σ

)
+ ρ

∣∣∣
Observe that aΣ = −|ρ|. To finish the proof it suffices to establish that∣∣∣α

i
− α

Σ

∣∣∣ > 2|ρ|, for i ̸= Σ. (3)

Indeed, from (3), we get

ai ≤ −
∣∣∣α
i
− α

Σ

∣∣∣+ |ρ| < −2|ρ|+ |ρ| = aΣ,

for i ̸= Σ. We now establish Σ. If i ̸= Σ and i < 2 · Σ, we get∣∣∣α
i
− α

Σ

∣∣∣ = ∣∣∣∣α(Σ− i)

iΣ

∣∣∣∣ ≥ α

2Σ2
> 2

α2

Σ2
= 2|ρ|,

where the strict inequality is true as longs as α < 1/4.
Now, if i ̸= Σ and i ≥ 2Σ, then i− Σ ≥ i/2, which gets us:∣∣∣α

i
− α

Σ

∣∣∣ = ∣∣∣∣α(i− Σ)

iΣ

∣∣∣∣ ≥ α

2Σ
> 2

α2

Σ2
= 2|ρ|,

where again it is enough to require that α < 1/4.

3

Finally, we explain how to get rid of the assumption Σ ≥ 1. Let us denote the value of the expression (1)
by θ. We have that θ is positive for even Σ ≥ 1, and θ is negative for odd Σ ≥ 1. Now, at the first layer, we
can compute the quantity 1/(2n)− (x1 + . . .+ xn)/n by taking the arithmetic mean of the input bits using
sotftmax with uniform weights, and computing 1/(2n) by Lemma 1. Observe this quantity is positive for
Σ = 0 and negative otherwise. It remains to output max{θ, 1/(2n)− (x1 + . . .+ xn)/n} in the third layer.

References

[1] Bhattamishra, S., Ahuja, K., and Goyal, N. On the ability and limitations of transformers to
recognize formal languages. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP) (2020), pp. 7096–7116.

[2] Bhattamishra, S., Hahn, M., Blunsom, P., and Kanade, V. Separations in the representational
capabilities of transformers and recurrent architectures. arXiv preprint arXiv:2406.09347 (2024).

[3] Chiang, D., and Cholak, P. A. Overcoming a theoretical limitation of self-attention. In Annual
Meeting of the Association for Computational Linguistics (2022).

[4] Delétang, G., Ruoss, A., Grau-Moya, J., Genewein, T., Wenliang, L. K., Catt, E., Cundy,
C., Hutter, M., Legg, S., Veness, J., and Ortega, P. A. Neural networks and the Chomsky
hierarchy. arXiv preprint arXiv:2207.02098 (2022).

[5] Hahn, M. Theoretical limitations of self-attention in neural sequence models. Transactions of the
Association for Computational Linguistics 8 (2020), 156–171.

[6] Peng, B., Narayanan, S., and Papadimitriou, C. On limitations of the transformer architecture.
arXiv preprint arXiv:2402.08164 (2024).

[7] Sanford, C., Hsu, D. J., and Telgarsky, M. Representational strengths and limitations of trans-
formers. In Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023
(2023), A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, Eds.

[8] Vaswani, A. Attention is all you need. Advances in Neural Information Processing Systems (2017).

4

	Introduction
	Preliminaries
	Construction

